

Workshop on Revolutionary Aerospace Systems Concepts for Human/Robotic Exploration of the Solar System

Heiko Hecht & Laurence Young

Man-Vehicle Laboratory

Massachusetts Institute of Technology

Prolonged 0-Gravity is devastating

- Bone- and tooth-loss
 - calcium excretion
- Cardiovascular problems
 - muscle atrophy
- Neurovestibular dysfunction
 - orientation, posture control
- Immune deficiency

Traditional countermeasures are inadequate for long-duration space flight

- Exercise and electrical muscle stimulation
- LBNP
- Diet and drugs (e.g. to prevent calcium excretion)
- Pre-flight training

Artificial Gravity is indispensable

- AG is the only countermeasure that removes the cause for deconditioning
- A 3-year mission without AG would be unethical
- AG research is sadly underdeveloped
- AG has sensory side-effects to which humans have to adapt
- Limits to this adaptability pose serious constraints on the implementation of AG

Major Features of Rotating Environments Artificial Gravity Level (Centripetal Accel.) rop2 Coriolis Forces -2m(\omega x \omega) Gravity Gradients h/r Cross-coupled Angular Accelerations \tilde{\omega_{SRC}} \times \tilde{\omega_{Head}}

Centrifugation Side-Effects

- -Inappropriate non-compensatory nystagmus
- -Motion sickness
- -Illusory tilt sensations
- -Orientation problems
- -Postural instability
- -Disturbance of motor actions as a function of location and orientation within the centrifuge

Mastering the Side-Effects

OPTIONS:

- 1. Increase radius above 300 m
- 2. Limit exposure to brief (1 h daily) periods
 - = Intermittent centrifugation
- 3. Establish multiple adaptive states
 - = Context-specific adaptation

Long-Radius Centrifugation

- Earth-like conditions
- Gravity gradient insignificant
- Coriolis-effects are negligible with sufficiently large radius
- Only 2 adaptive states required (1-g and Destination-g)

Long-Radius Centrifugation

- Expensive
- Engineering challenges
- · Difficult to turn on and off
- Coriolis-effects when noticeable are omnipresent

Short-Radius Centrifugation

- Can be intermittent
- Cost-effective
- Space-efficient
- Relatively easy to implement
- Fits within almost any space craft (and inside Shuttle, ISS/Spacehab)
- Easy to turn on and off

Short-Radius Centrifugation

- Multiple adaptive states required (Earth 1-g, 0-g, Artificial-g with gradient, Destination-g)
- Strong side-effects because of high rotation rates
 - •Inappropriate non-compensatory nystagmus
 - Motion sickness
 - Illusory tilt sensations
 - Orientation problems
 - Postural instability

Feasibility Matrix: Radius and Exposure Duration RADIUS long short adaptation less intermittent im practical if not critical im possible 1-D adaptation may be sufficient **EXPOSURE** adaptation most complex adaptation critical continuous critical but complex adaption m anageable due to to the fullest extent small magnitude m andatory

Intermittent Short-Radius Centrifugation

- -Neurovestibular: Multiple adaptation to complex head movements
- -Can complex motor-coordination recalibrate?
- -Bedrest studies to determine extent of cardiovascular and bone benefits with g-gradient
- -Optimizing dosage, radius, pre-training, etc.

- -Precious few animal studies
 - -Cosmos satellites
 - -Plans for ISS, Mars Society
- -One human study of neurovestibular Coriolis effects on Neurolab
- -No human studies with AG to this date

Derating in a permanent AG environment

- Assume the astronaut has adapted to the following
 - motion sickness
 - motor recalibration
 - neurovestibular side-effects
- Cognitive adaptation to Coriolis forces will remain a challenge

Intuitive Physics

- Human intuitions about physics problems are often erroneous
- When working in a rotating environment we cannot afford to have wrong intuitions about how objects will behave
- -Cognitive and perceptual implications of AG need to be investigated

C-shaped tube

QuickTime™ and a Animation decompressor are needed to see this picture. QuickTime™ and a Animation decompressor are needed to see this picture.

Visual animation eliminates errors on this task (Kaiser et al., 1992)

Intuitive Physics in a Coriolis Environment

- -Humans are likely to have serious difficulties acquiring intuitions about Coriolis forces
- Orientation with respect to rotation plane and direction will become a new cognitive and perceptual dimension
- -We have not even started to think about the added perceptual and cognitive load that is required to function in AG

Conclusions

- AG is indispensable
- Implementation with an affordable radius causes sideeffects
- Context-specific adaptability is the key to overcoming the side-effects
- Intermittent AG might get away with simple adaptation (preliminary research looks promising)
- Flight experiments are needed to assess whether intermittent AG is a sufficient countermeasure
- Continuous AG with affordable radius makes complex adaptation mandatory
- We are only starting to look at complex vestibular and motor adaptation
- Cognitive aspects of complex adaptation are terra incognita

Literature

- Burton, R.R., & Meeker, L.J. (1992). Physiologic validation of a short-arm centrifuge for space application. <u>Aviation, Space & Environmental Medicine,</u> 63, 476-481.
- Hecht, H., & Bertamini, M. (2000). Understanding projectile acceleration. <u>Journal of</u>
 Experimental Psychology: Human Perception and Performance, 26, 730-746.
- Hecht, H., Kavelaars, J., Cheung, C., & Young, L. R. (in press). Orientation illusions and heart-rate changes during short-radius centrifugation. <u>Journal of Vestibular Research</u>.
- Kaiser, M. K., Proffitt, D. R., Whelan, S., & Hecht, H. (1992). Influence of animation on dynamical judgments. <u>Journal of Experimental Psychology: Human Perception</u> and <u>Performance</u>, 18, 669-690.
- Loret, B. J. (1963). Optimization of space vehicle design with respect to artificial gravity. <u>Aerospace Medicine</u>, 34, 430-441.
- McCloskey, M., Caramazza, A., & Green, B. (1980). Curvilinear motion in the absence of external forces: Naive beliefs about the motion of objects. <u>Science</u>, <u>210</u>, 1139-1141.
- Young, L. R. (1999). Artificial gravity considerations for a Mars exploration mission. In B. J. M. Hess & B. Cohen (Eds.), <u>Otolith function in spatial orientation and movement</u>, 871 (pp. 367-378). New York: New York Academy of Sciences.
- Young, L. R., Hecht, H., Lyne, L., Sienko, K., Cheung, C., & Kavelaars, J. (2001).
 Artificial gravity: Head movements during short-radius centrifugation. <u>Acta Astronautica</u>, 49, 215-226.

Acknowledgements This work was jointly supported by the National Space Biomedical Research Institute through a cooperative agreement with the National Aeronautics and Space Administration (NCC 9-58)